from Crypto.Util.number import inverse from functools import reduce
defcrt(a, m): '''Return a solution to a Chinese Remainder Theorem problem. ''' M = reduce(lambda x, y: x*y, m) Mi = [M//i for i in m] t = [inverse(Mi[i], m[i]) for i inrange(len(m))] x = sum([a[i]*t[i]*Mi[i] for i inrange(len(m))]) return x % M
不满足模数两两互素时
这种情况有最小解 x 满足条件,很多博客也讲的很详细,但是没找到 Python 写的…
与 m 互素时一样,m 不互素时显然也会有无限个解 X=k⋅M+x ,但是 m 之间不互素时,在模 M 的意义下也可能会有多个解。
x 为最小解,m1,m2,…,mn 的最小公倍数为 L ,X<M ,易知 X=x+k⋅L ,枚举 k 就可以了。
from Crypto.Util.number import GCD, inverse from functools import reduce
defegcd(a, b): if a == 0: return (b, 0, 1) else: g, y, x = egcd(b % a, a) return (g, x - (b // a) * y, y)
defcrt_minial(a, m): '''Return the minial solution to a Chinese Remainder Theorem problem. ''' assertlen(a) == len(m), f"length of {a} is not equal to {b}" m1, a1, lcm = m[0], a[0], m[0] for i inrange(1, len(m)): c = a[i]-a1 g, k, _ = egcd(m1, m[i]) lcm = lcm*m[i]//GCD(lcm, m[i]) assert c % g == 0, 'No Answer!' t = m[i]//g a1 += m1*(((c//g*k) % t + t) % t) m1 = m[i]//g*m1 return a1